Nonlinear Identification Using Orthogonal Forward Regression With Nested Optimal Regularization
نویسندگان
چکیده
منابع مشابه
Robust nonlinear model identification methods using forward regression
In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria tha...
متن کاملKernel Density Construction Using Orthogonal Forward Regression
An automatic algorithm is derived for constructing kernel density estimates based on a regression approach that directly optimizes generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. Local regularization is incorporated into the density construct...
متن کاملIdentification of nonlinear systems with non-persistent excitation using an iterative forward orthogonal least squares regression algorithm
A new iterative orthogonal least squares forward regression (iOFR) algorithm is proposed to identify nonlinear systems which may not be persistently excited. By slightly revising the classic forward orthogonal regression (OFR) algorithm, the new iterative algorithm provides search solutions on a global solution space. Examples show that the new iterative algorithm is computationally efficient a...
متن کامل- norm penalised orthogonal forward regression
Xia Hong, Sheng Chen, Yi Guo and Junbin Gao Department of Computer Science, School of Mathematical, Physical and Computational Sciences, University of Reading, Reading, UK; Electronics and Computer Science, University of Southampton, Southampton, UK; Department of Electrical and Comptuer Engineering , Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia; CSIRO Mathematics and...
متن کاملElastic net orthogonal forward regression
An efficient two-level model identification method aiming at maximising a model's generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Cybernetics
سال: 2015
ISSN: 2168-2267,2168-2275
DOI: 10.1109/tcyb.2015.2389524